December 27, 2019 - 14:32 AMT
Brain can mix natural and artificial vision "to help treat blindness"

Research by Israeli and US scientists suggests that the brains of blind people who get artificial retina implants may be able to process information from the implant and integrate it successfully with stimuli coming naturally from other parts of the retina.

The finding could pave the way to better restore vision in patients who suffer from one of the most common causes of blindness, the researchers said, according to the Times of Israel.

In the study, published in the journal Current Biology, researchers from Israel’s Bar-Ilan University and Stanford University in the US show “for the first time” evidence indicating that the brain knows how to integrate natural and artificial vision, while maintaining and processing information that is important for vision, according to a statement by the universities.

Macular degeneration (AMD) causes blindness in millions of people in the Western world. It is the most common cause of severe vision loss in the Western world among those aged 50 and over, and its prevalence increases with age. Though there is no cure for AMD, significant recent advancements in artificial retina implants may lead to effective treatment.

Located inside the eye, the retina contains light receptors (photoreceptors) that absorb light. Information is then processed and transmitted to the brain. The macula, the central area of the retina, processes most of the information that reaches the brain from the eye, enabling one to see while reading and driving, facial recognition, and any other activity that requires accurate vision.

In the peripheral retina, the area of the retina outside the macula that assists mainly with spatial judgment, vision is 10-20 times less precise. In AMD precise vision is impaired due to damage to the center of the retina, while peripheral vision remains normal.

When there is damage to the photoreceptor layers in the retina, an artificial retina — a device built from tiny electrodes smaller in width than a hair — may be implanted. Activating these electrodes results in electrical stimulation of the remaining retinal cells and results in visual restoration, albeit partially.

AMD patients implanted with an artificial retina possess a combination of artificial central vision and normal peripheral vision.