Нейросеть научилась распознавать рецепт блюда по фотографии21 июля 2017 - 18:13 AMT PanARMENIAN.Net - Команда исследователей из Массачусетского технологического института создала нейросеть, которая умеет составлять список ингредиентов и рецепт приготовления, получая на вход только изображение блюда. Для обучения алгоритма использовалась созданная авторами открытая база данных, которая содержит один миллион рецептов. Авторы новой работы представили Recipe1M – открытую базу данных, содержащую один миллион рецептов с различных кулинарных сайтов с названием блюда, его фотографией, списком ингредиентов, инструкцией по приготовлению, а также типом блюда, пишет N+1. На собранной базе данных исследователи обучили нейросеть, которая получает на вход изображение блюда и выводит список ингредиентов и инструкцию по приготовлению. Она может работать и наоборот: выводить изображение блюда, получая на вход его рецепт. Нейросеть работает по принципу совместного вложения: разбивая рецепт на вектора с ингредиентами и инструкцией приготовления, нейросеть сопоставляет его с изображением максимально соответствующего рецепту блюда, которое, в свою очередь, сравнивается с данным ей на вход посредством линейного трансформирования. Обучив нейросеть, исследователи провели испытания ее работы и сравнили с результатами опроса, в ходе которого просили обычных людей соотнести изображение блюда с одним рецептом из представленных десяти: точность нейросети при составлении рецептов равняется 83,6 процента, в то время как люди правильно определяли рецепт блюда в 81.6 проценте случаев. Обилие общедоступных сайтов с кулинарными рецептами открывает для области изучения искусственного интеллекта возможность создания алгоритма, который будет активно помогать людям в процессе готовки: например, при помощи составления рецепта случайно увиденного блюда или автоматической оценке того, насколько оно вкусное или калорийное. Предыдущие попытки создания нейросети, которая умела бы составлять рецепт, используя только фотографию блюда, были ограничены объемом используемых база данных, что приводило к низкой точности результатов. Использование сотни тысяч входных данных обеспечило точное составление рецептов только в половине (50.76 процентов) случаев. Самое значимое Ара Хачатрян занимал должность генерального директора с апреля 2020 года Правительство одобрило проект налогообложения рекламы, размещаемой на электронных платформах По словам Багдасаряна, в 2020 году компания увеличила число активных пользователей в 20 раз Krisp является одной из 50 наиболее перспективных компаний в сфере ИИ в 2020 году Partner news Самое читаемое в разделе | Бизнесмену и меценату Микаелу Варданяну присвоено звание Почетного гражданина общины Масис Варданян реализовал в Масисе множество патриотических и жизненно важных благотворительных программ Армения стала председателем Средиземноморской платформы регулирующих органов Средиземноморская платформа регулирующих органов объединяет независимые регулирующие органы из 24 стран Баланс прикрепленных карт в приложении Idram&IDBank В Idram отмечают, что это улучшение было введено по многочисленным запросам пользователей Новое предложение Америабанка: Розыгрыш инвестиционных портфелей на 2 млн драмов Платформа MyInvest предлагает выбор из 30,000 армянских и международных ценных бумаг с более 30 рынков |